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ABSTRACT: High-energy limits of fixed-angle tree-level stringy scattering amplitudes in
the light-like linear dilaton background are calculated. Treating the time component of the
gradient of light-like dilaton field (Vj) as a moduli parameter, we show that:

(1) there exists a new fixed-point (Vp/E — o0) in the moduli space of the bosonic open
string theory, where a new high-energy symmetry among scattering amplitudes can
be identified,

(2) this new symmetry can be interpreted as a deformation of the flat-space high-energy
symmetry, as proposed by D. Gross.

Hence, our results give a concrete illustration about the relation between high-energy
stringy symmetry and the background independent formulation of string theory.
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1 Introduction

Based on a series of work on the high-energy scatterings [1-3| which relies on semi-classical
(saddle-point) approximation in the functional integral evaluation of stringy scattering am-
plitudes, D. Gross conjectured that there exists a high-energy symmetry in string theory [4].
This is an infinite dimensional symmetry which treats all stringy excitations as a single
multiplet and relates high-energy scattering amplitudes among physically inequivalent de-
grees of freedom. Specifically, there are infinitely many linear relations among high-energy
stringy scattering amplitudes of particles at the same mass level, and one can use inter-
level symmetry to obtain any four-point amplitudes from the the four-tachyon Veneziano
amplitude [5-7].

In a later reinvestigation of this problem [8-15], the authors have clarified some of the
important issues related to the high-energy stringy symmetry (HESS):

(1) Linear relations among high-energy stringy scattering amplitudes at fixed mass level
can be derived algebraically based on decoupling of the high-energy zero-norm states.

(2) Leading behaviors of the high-energy stringy scattering amplitudes can be obtained
based on saddle-point approximation and it is crucial to keep subleading ﬁ (poly-
nomial) corrections in order to derive linear proportional constants among scattering
amplitudes. Also, the explicit formulae of the four-point high-energy stringy scatter-
ing amplitudes, as a function of energy and scattering angle, leads to a symmetry

pattern for inter-level scattering amplitudes.

It is important to note that the high-energy stringy symmetry we discuss here is an approx-
imate global symmetry. It is an approximate symmetry since we are doing a ﬁ expan-
sion for all (tree-level) scattering amplitudes, and it is a global symmetry since we compare
scattering amplitudes among independent degrees of freedom. Thus, one might be curious
about the connection between the HESS and the infinite target-space gauge symmetry [16—
18], and wonder that how it is possible to derive HESS from the decoupling of high-energy
zero-norm states. For a detailed discussion, see [12, 14]. Here we try to provide a physical
analogy. First of all, it is widely believed that all the massive string excitations gain their
masses through a higher-spin generalization of the Higgs mechanism, in the same way as
the mass generation of vector bosons in the electroweak theory. However, there seems to be
some difference between these two cases. In the field theoretical context, the Higgs mecha-
nism is facilitated by the introduction of tachyonic scalar particles to the massless gauge the-
ory. In low-energy physics, it is more appropriate to identify the would-be Goldstone bosons
(the field quanta after shifting the tachyonic scalar fields to the true vacuum) as the longi-
tudinal degrees of freedom for the massive vector bosons. Nevertheless, in the high-energy
limit (E > M,,), the advantage of such an identification is diminished. Instead, one can



simply study the interactions among massless scalars with massless gauge bosons with finite
Yukawa couplings and then treat M, /E corrections as perturbations in the scattering pro-
cesses [19]. In this view, the celebrated equivalence theorem for the gauge theory with spon-
taneous broken symmetry [20] simply translates into the following: ”The high-energy sym-
metry among gauge bosons scatterings in a theory endowed with spontaneous broken sym-
metry is nothing but a reflection of the global symmetry of the tachyonic scalar particles.”.

It is important to realize that, the global symmetry of the tachyonic scalar particles in
field theoretical models is in principle independent from the gauge symmetry. While the
tachyonic scalar particles must carry non-abelian charges to couple to gauge fields, one can
impose additional global symmetry and specify suitable representation for the tachyonic
scalar particles under this independent global symmetry. If we apply the same idea to the
case of string theory, viewed as a higher-spin gauge theory with a super-Higgs mechanism,
there are two immediate questions:

(1) How to identify the would-be Glodstone bosons (presumably these will consist of a

whole tower of particles with arbitrary spin)?

(2) Modulo the issue of open-closed string duality, it seems that we know better about the
gauge symmetry (e.g. in string field theory formulation), but not the global symmetry
of string theory. Put it differently, what is the spontaneous symmetry breaking
mechanism in string theory? Is the string gauge symmetry so powerful and restrictive
such that there is only one way to incorporate spontaneous symmetry breaking?

It is clear that that the reason that we do not have good answers to the questions above
is that we do not have a formulation of string theory in the most symmetry vacuum [21].
However, one can still try to circumvent this difficult by taking a different strategy. Fol-
lowing the old wisdom, it is natural to probe the string dynamics in the high-energy limits,
such that through a similar mechanism as equivalence theorem, one can probe the global
symmetry with the high-energy scattering amplitudes among massive gauge bosons.

Once we pursue this idea further, there are still some conceptual problems that could
cause confusion. Since in most practical calculations of stringy dynamics, we first choose a
particular conformal invariant background and study the particle spectrum, the scattering
amplitudes are calculated perturbatively (e.g. in string coupling constant g). In general,
the particle spectrum depends on the space-time background, hence we expect the symme-
try pattern among high-energy stringy scattering amplitudes should vary as we consider
different space-time background [22-27]. Furthermore, there are different kinematic limits
(fixed-angle v.s. Regge) one can take in studying the high-energy stringy symmetry [28, 29].
In view of these, one may raise a natural question: in what sense do these different sym-
metry patterns really teach us anything about the nature of string symmetry? In other
words, is there a universal symmetry principle underlies these background (kinematic)
dependent data?

This paper is an attempt to provide some hints to the question above. Using a simple
solvable string theory model, e.g. bosonic open string theory in a light-like linear dilaton
background, we illustrate the concept of a universal symmetry in string theory. That is,



suppose that there exists a Lie algebra structure for the global symmetry (presumably
a symmetry of infinite dimension), all the conformal invariant background data (moduli
parameters) are encoded in the structure constants of this infinite symmetry. Any path
connecting two fixed-points in the moduli space will induce a spectral flow of particle
spectrum in string theory, and we should expect a deformation of stringy symmetry from
one fixed point to another. Such a symmetry deformation is nothing but a string theory
generalization of group contraction, as analogous to that flattening a sphere into a plane
leads to deformation of the isometry group from SO(3) to E(2).

This paper is organized as follows: A brief review and summary of previous results re-
lated to this paper is given in section 2. We also establish our notations and conventions in
this section. Section 3 focuses on the study of covariant spectrum of the bosonic open string
theory in the light-like linear dilaton background. Here we emphasize the idea of spectral
flow for the physical state solutions to the Virasoro constraints. Our main results of HESS
of bosonic open string theory in the light-like linear dilaton background are presented in
section 4. A new fixed-point in the moduli space is identified and two sets of replacement
rules for HESS at two fixed-points in the moduli space are compared. We summarize
the main points of our findings in section 5, emphasizing the idea of a universal stringy
symmetry and its connection with a background independent formulation of string theory.
Finally, we conclude by listing some future works to be done and possible speculations.

2 Bosonic open string theory in the linear dilaton background

2.1 Polyakov action for the bosonic open string theory in the linear dilaton
background

Since our starting point is very similar to that of [30], we shall follow the notations in [30]
closely. The Polyakov action for the bosonic open string theory in the linear dilaton
background is given by

. 1 2 ab 1 / 2
X . _— .
S ol /zd a\/gg Oy (J) Op X (U) + I )y d g\/gR(U)V X(U)

—|-2i dsk(§)V - X (), (2.1)
™ Jox

here R(o) is Ricci scalar of the world-sheet ¥ and (&) is the geodesic curvature along the
boundary of the world-sheet 9%. From this we can extract the energy-momentum tensor,

T,, = —i, (09X - 0X 1 4+V - 0%X. (2.2)
Y

The string coordinates in the oscillator representation are
o m=oo ol
XMz, 2) = a# —iap*In|z> + i 5 Yoo T +E™). (2.3)

m
m=—o00,m#0

The Virasoro generators of the conformal transformation are defined as the Fourier modes
of the energy-momentum tensor 7,
1 & o
Ly, = jédzzmHTZZ =35 Z D Qe Qi ¢ 1 E(m + D)V -y, (2.4)

n=—oo



and they satisfy the following algebra relation,

D +6a/V?

[Ls L] = (m = 1) Lo + =

m(m® —1)0mn. (2.5)

Notice that the central charge includes a term which is in proportion to V? = VEV, and
we can have different space-time dimension D depending on the sign of V? (space-like
V2 >0= D < 26, time-like V2 < 0 = D > 26). To simplify the calculations and to avoid
the complication due to the Liouville potential in the non-critical dimension, we take the
dilaton gradient, V* = 9"® to be light-like and the space-time dimension is D = 26.

2.2 Covariant spectrum of physical states in the bosonic open string theory
in the linear dilaton background

The physical state spectrum of the bosonic open string theory in the linear dilaton back-
ground is defined similarly to that of flat space-time. In the oscillator representation,
we solve all possible linear combinations of creation operators acting on a Fock vacuum,

subject to the Virasoro constraints:
Lo|®(k)) = |®(k)), and L,|P(k))=0, n=>1. (2.6)

These constraints in general lead to the generalized on-shell condition for the center of mass
momenta, and restrict the polarization tensors to be transverse and traceless. In our study,
we shall focus on the physical states up to the first massive level, and we shall use a single
capital letter to represent the particles. For instance, the tachyon state (T) is given as

IT(k)) =10,k), with o'k-(k+iV)=1. (2.7)
At massless level, we have a photon state (P) with polarization vector ((k):

|P(¢,k)) = Cua 110, k), with o'k (k+4iV) =0, and

¢-(k+iV) = 0. (2.8)

Finally, at the first massive level (M), we have a tensor particle with spin-two, and it is
written as

|M (e, k) = (e 0”1 +€,0,)]0,k), with o'k- (k+iV) = —1. (2.9)

The £ conditions, £1|M (€, k)) = 0, gives
V2d/e, (K +iVY) + €, = 0, (2.10)
and the Lo conditions, Lo|M (e, k)) = 0, gives
™ + V2a/e, (2K + 3iVH) = 0. (2.11)
Substituting €, from eq. (2.10) to eq. (2.11), we get

20/ € (K +iVH) (2K 4 3iV") — €un™ = 0. (2.12)



Note that all of these relations contain explicit dependence on the linear dilaton gradient
V#_ and one can verify that as V# goes to zero, we recover all the previous results on
physical spectrum for bosonic open string in flat space-time [18]. It is then natural to treat
V# as a moduli parameter and identify the solutions to the Virasoro constraints as a spectral
flow. In addition to the interpretation of physical spectrum deformation (as a function of
VH), it is also crucial to emphasize that the inner product in the one string Fock space in
the linear dilaton background is also deformed. Here we follow the prescription in [30] and
define the inner product for the center of mass degree of freedom of any stringy excitation,

(Kk) = (27) 76D (K — k —iV).

One should be cautious about the definition of zero-norm states with respect to the de-
formed inner product and check that the gauge invariance (decoupling of the zero-norm
states) is maintained in the presence of a linear dilaton background [31].

2.3 Vertex operators and string scattering amplitudes of the bosonic open
string theory in the linear dilaton background

Functional integration method has been applied to the calculations of scattering amplitudes
of tachyon and photon states in the presence of a light-like linear dilaton background [30].
We approached and extended the similar calculations based on the operator methods [31—
33]. The explicit forms of vertex operators of physical states are shown to satisfy the
conformal algebra [32],

[Em, V(T):| = emT ( - z’dilT - m>V(T). (2.13)

Here we list the results for normal-ordered vertex operators of tachyon(T), photon(P) and
the massive tensor(M),

IT(k)) = e PV kX, (2.14)

C (X +idV) _ove e
|P(¢, k) = #e RV gk X (2.15)
|M (€, k) = ;LOZ(X“ + ia'VH) (XV +ia'VY) — Z;O/ X |em@RVT R X (2.16)

Given these explicit forms, it is straightforward to obtain any stringy scattering amplitudes.
Interested readers are invited to consult our paper in [31], and we shall use the results
from [31] directly in section VI.

3 Covariant spectrum of the first massive spin-two particle in the linear
dilaton background

In this section, based on the method in [18], we solve for the Virasoro constraints of bosonic
open string theory in the linear dilaton background, and derive a general decomposition of
physical states in terms of zero and positive norm states at the first massive level.



3.1 Construction of the zero-norm states

Using the generators of the Virasoro algebra for the open string theory, one can construct
zero-norm states (ZNS), which generate stringy gauge symmetry [32, 34, 35]. At the first
massive level (o/m? = 1), we have two types of zero-norm states:

type I vector ZNS, L_1]x) = L_1(epa )]0, k), (3.1)

where the ”seed state” |x) = €-a_1]|0, k), satisfies the following conditions,

Lolx) =0 = k- (k‘ + iV) = —1 (on-shell condition), (3.2)
Lilx)=0=€- (k: + z'V) =0 (transverse condition), (3.3)
and Lo|x) = 0 holds automatically. If we use the oscillator representation of Virasoro

generator,
L 1 ~a_jag+ a_s0q,
we can read out the polarizations of the vector zero-norm states,

[’—1‘X> = (Euuaﬁlail + EMOéliQ) ’07 /{7>,

where €, = \/g(eukzl, + e,,k:u).

In order to solve for the polarization vector €, eq. (3.3), it is useful to express all mo-
menta in the helicity basis. In the presence of a linear dilaton background, the momentum
of the first massive (a/m2 = 1) spin-two particle is chosen as

k= (E—z'E,k iE,O),
2 2

and the helicity basis for the planar scatterings consists of the following vectors [18]:

Vo' (E,k,0),
Vd/ (k, E,0), (3.4)
Va/(0,0,1).

eP
eL
eT

It is clear that these orthonormal vectors satisfy the completeness relation:

e . 6P = ,,704,3, Z (ea)ﬂ(ea)y = Nyw, a,0=P L,T;.

«

For later convenience, it is useful to decompose the following vectors in terms of the helicity

basis,

1
k =

(aleP + bleL),

/

-5

k+1iV =

(a26p + bgeL), (3.5)

/

B

|
\]
|



1

(07

3
k:—{—EZV = ,(a3€P—|—b36L).

The expansion coefficients are:

v=d(E+k)V,

) z
=1——-v, b
al 20, 1= 2
1 )
:1 — b = ——7.:
ao + 2?}, 2 207
a3 =1+1iv, by = —iv.

From eq. (3.3), it is clear that we have 25 solutions for the transverse polarization vector,
€,- Specifically, we shall use the following vectors

(L) o byer’ + agel, and €(T}) o et

to construct all type I vector zero-norm states:

Case 1:
en(L) = \/_(b26P+a2€L)
= euw(L) = 2albge el —|—2a2ble e, +(a1a2+blbz) (e e, —i—epeﬁ)
ZNSH(L)) = [eu(D)a 0%y + u(L)as ] 0,k)
[ 2a1b0a" 0| + 2a9b10" 0",
= I3 |k, 0)
+2(a1a2+b1bz) o 1+\/_(b2a 9 + aga” 2)
v’ o of v\
(— W — 5) o+ (w — 5)(1_1a_1
= b v s Wy g |k,0). (3.6)
+ (240 « —=a_ +< 2—1——)04,
i ( ) —1%—-1 — \/5 2 \/5 2
Case 2:
V3 p
TZ' = —e€),
EH( ) a e,u
= (1) = (ezief—i—e e ) (e el +elie )
ZNSH(T)) = [u(T)at " 1+eu< Do) 10,k)
24
by V2 1,
= ZUPT |:2(X 100 1+2— 1+a—1 Z2]‘0,k>
=1
24 .
_ V2
- (20 0T + okl 7110, k). (3.7
izluPTz[ a—1a71+ 2_,L',Ua— — 2_2',0&72 | ’ > ( )



The type II ZNS at the first massive level can be calculated by the same formula as
that in the flat space-time. We have

lp(k)) = (2L_5 +3L24)(0, k)

= {euyaula 1+ epa }|0 k), (3.8)
where €., = 6a’k,ky, + 1y,
and en = V2d/(5k, —iV},).

One can check that the normalization of |p) is

(k) (k) = 2 [ (B)€™ () + e () (k)| 6k — k — V')
182 (k - k%) + 3a'k? + 30/ (k)
—4 D2 (K =k —iV).
+ 250/ (k- k") + 5id/ (k = K*)V + == + o'V?

Substitute the on-shell condition o’k - (k: + iV) = —1 and o/k* - (k:* - iV) = —1, one can
verify that |p(k)) is indeed a zero-norm state for all D and V#. Expanding all the Virasoro
generators in eq. (3.8), we get

€uy = 60//<:Mky + M
= (6a1—1)euey —|—(6b2—|—1 € +Z —i—6a1b1(e e, —|—efeﬁ)
and
€ = —V2ley (k:” + iV")
= \/5[60/(11 (a1a2 — blbg) — ag] 65 + \/5[60/[)1 (a1a2 — blbg) — bg} eﬁ
Putting all these ingredients together, we get

|ZNSpr) = (ewa“la L+ et >\O k)

24
(6a%— ) PlaP1+(6b%+1)afla£1+Z ozTilaTil%—lZalblaPlaLl]
V= ‘07 k>

—|—\/§[6a1 (a1a2 — blbg) — QQ} 04132 + \/5[6[)1 (a1a2 — blbg) — b2:| «

2 2
(5—61’1}—3%)(1]_31041_31—1—(1—— blar 1—1—204 o
- | 0,8).  (3.9)

I (61?} + 3v ) PloéLl + (7 - 7

3.2 Spectrum of positive-norm states

After transforming the spin-two polarization tensor €,, into helicity basis,

€ = Zuaﬁ(e“)u(eﬁ)y, a,3=P,L,T;, (3.10)



the Virasoro constraint, eq. (2.12), becomes
4o/ w R yal v 3. v\ _ in%
e (k:2 + iV ) ks + §ZV = €7
24
= deu [az(eD)" + bo(eX)"] [as(e”) + bs(eh)’] = —ulP + L + ZuTiTi
i=1
= (4(12(13 + 1)uPP + (4b2b3 — 1)uL (4a2b3 + 4a3b2 ZUT T = . 3 11)

On the other hand, £; condition implies that the polarization vector can be derived as a
projection of the spin-two tensor €,

€ = —V2ley, (k” + iV'/) (3.12)
= _f[ uABeAe ][ +b2( ) ] (3.13)
A,B=P,LT;
= —f( — aupp + byupy) 5 —V2( - aupr + bQULL)eﬁ

—\/52 ( — aupr; + bguLTi)eZi (3.14)
i=1

[( Y (Y]t [(v Y (22 ]

E[( o ()

The solutions of positive-norm states at o/m? = 1 level in a linear dilaton background are

=3

(3.15)

given by

24
|[PNS); = Z [aflafl + (4babs — 1)(17}1(1:51 - \/5b20{£2:| |0, k)

i=1
24
:;[ alialy — (14 20%)a’; o’ 1+\/§ 2]\O,k>, (3.16)
24 b
|[PNS)y = Zwi <a£1aTi1 — —ZOéTi2> |0, k)
P V2
24 )
L T; T;
= w;| aZja’y + —=al’ |0, k), 3.17
S wi(akia + 575t 0 .17
|IPNS)s =) (uTT — —Zum> T a9 |0, k). (3.18)
ij

In the later calculations of stringy scattering amplitudes, we should use normalized
positive-norm states (or, equivalently, vertex operators) as inputs. This is important in
comparing the high-energy limits of different physical string scattering amplitudes as a

,10,



manifestation of high-energy stringy symmetry. For this reason, we choose to represent the
positive-norm states for the spin-two particles as

1 v
PNS —  |M(LL)) = ————1al,a", — (1+20®)a’ o’ + —=al, |0, k),
PNSH = ML) = T fafialy - (1 2%)aT i, + oty 0
, .
IPNS), —  |[M(LT)) = m(aLlaTl + 2@_\%0;2)'0, k), (3.19)

1
IPNS); — |M(TT)) = —aofa’,|0,k).

V2

It is interesting to notice that at this massive level, if we tune the moduli parameter v from

zero to infinity, the spectrum apparently degenerated,
IM(LL),v — o) o< aX1a’]0,k) oc |M(TT),v — o).

However, we shall see later that, actually the contributions from a* ol piece of |M(LL))
state to the high-energy stringy scattering amplitudes relative to those of a’;a’; piece of
|M(LL)) is of order v?. Hence, it has non-vanishing contribution to the scattering ampli-
tudes and one should be careful in interpreting the degenerate spectrum at v — oo limit.

3.3 General decomposition of a physical states at o/m? =1 level

Having identified all the independent basis states of the covariant spectrum at a’m? = 1in a
light-like linear dilaton background, we can now write down the most general decomposition
and find the solution to the Virasoro constraints at o/m? = 1. Introducing a new sets of
expansion coefficients {x, y, z, w;}, we have

a0’y + ety |0, k)
=z|ZNSi1) +y|ZNSi(L)) + |ZNS[(T)) + z2|PNS); + |PNS)s + |PNS)s3. (3.20)
Comparing both sides of eq. (3.20), we get

upp = (Ga% - 1):13 + 2a1boy,
upr, = 60,1[)11' + (a1a2 + blbg)y,

UL = (Gb% + 1)3: + 2a9b1y + 24z,

b1 1
ULt = CUPT + o Wiy
1

24

1

21 ZuTeTz =x+ (4b2b3 — 1)z.
(=1

Solving x, y, z, w; in terms of u,g, we get

z = 0[(araz + bib2)upp — 2(arbo)upr],
y = 6] — (6a1b1)upp + (Ga% —1upr],
24z = —6[ayaz (1 — 6b7) + biba (1 + 6b7) Jupp (3.21)
+26[arba (14 6b7) + asby (1 — 6a3) Jupr + urr,

— 11 —



b1
w; = _QQ_UPTZ- + 2urTy,
1

5_1 = 60,% (a1a2 — blbg) — (a1a2 + blbg).

Substituting the solutions of (a;, b;) in egs. (3.21), we have

v2 v2
T = 6[<1+7>UPP+ <iU+E>UPL]a
302 302
y = 5[(—31’1}— %)uPp—i— <5—6iv— %)upL],

24z = —0(1 + 20*)upp — §(6iv + 40*)upr, +upr,
210
w; = — —upr; +2uLT;,
2 —

571 =5 — 6iv — 20°.

4 High-energy limits of the stringy scattering amplitudes in the light-like
linear dilaton background

In this section, we discuss the calculations of high-energy limits of stringy scattering am-
plitudes [31] in the light-like linear dilaton background. The goal is to examine the defor-
mation of high-energy stringy symmetry as a continuous function of the moduli parameter,
namely, the light-like dilaton gradient V#. This section consists of four parts: we first
define all relevant kinematic variables in part A, and obtain various three-point and the
high-energy limits of four-point functions in part B and C. Finally, we identify the replace-
ment rules for high-energy stringy scattering amplitudes and compare the high-energy
stringy symmetry at two fix-points of moduli space in part D.

4.1 Kinematic setup

Here we list the relevant kinematic variables for the calculations of stringy scattering am-
plitudes in the light-like linear dilaton background. For simplicity, we shall restrict all
momenta to lie in a two dimensional plane.

4.1.1 Kinematics for three-point functions in the light-like linear dilaton back-
ground

Our choice of kinematic variables for three-point functions in the light-like linear dilaton
background is based on the following diagram (subscripts for momenta or polarizations
denote labels of particles):

One can imagine a heavy particle moving down the slope of a linear dilaton background
with momentum ks and decaying into two particles. While —k3 stands for the momentum
of the right-moving remanet, we have another particle carrying momentum k; moving
toward left. In terms of components, we have:

(i) light-like dilaton gradient, V* = 0F®, V = (VO, i, Vz).
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Figure 1. Kinematic configuration for three-point functions

(ii) momenta of the second and the third particles,

VL N2 )

ko= <E2——20,k2——21,——22>, ko - (k?2+ZV) :—mg = E%—k% = m%.
% 2% )

ks= < - E3—70, —k3—71,—72>, ks - (k:3+zV) :—mg = Eg—kg = mg.

(iii) momentum of the first particle,
kiik:k2+k3—|—’LV: (EQ—Eg,kg—kg,O) = k. (41)
Here we have imposed the momentum conservation to obtain k.

(iv) on-shell condition for kq,

ki (k1 +iV) = —mi. (4.2)

If we substitute the explicit form, eq. (4.1), into the on-shell condition for ki, eq. (4.2), we
obtain

2(E2E3 — koks) = m3 + m3 — mi, (4.3)
and
Vo(Ey — E3) = Vi (ko —ks), (4.4)

from the real and imaginary parts of eq. (4.2), respectively. Since we have assumed that
the dilaton gradient is light-like, ViZ = V2 — V{2, it turns out that, based on eq. (4.4),

2
m
Vi = ———— V7, (4.5)
(B> — By)®

and we conclude that both V5 and m; must vanish and VO2 = V12.
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One can solve all kinematic variables in terms of ko, in particular, we get (for m; = 0),

Ey = y/m3 + k3,

(m3 + m3)ke + (m3 — m3) B

ks = Qm% ’
o (m3tmd)Bs + (md — ks
5 Qm% '

One can check that these solutions are consistent with the on-shell conditions for ki,
egs. (4.3), (4.4). In addition, one can verify that Fs — F3 = kg —ko. Hence we set V) = —Vj.

In later calculations of the three-point functions involving massive spin-two particles
in the helicity representation eq. (3.4), it is useful to make the following momentum de-

composition:
2 _ .2 ko — E 2 _ .2 ko — E
Valk; = (— i — )G = o) (o =) 2),0> — agel + byl (4.6)
my my
T T
Valky — @<E2 S %O,o) — areP 4 e, (4.7)
ke — [ — (m3+m3)Ea+(m3—m3)ks Vo _(m§+m§)k2+(m5—m§)E2+ o
3 2m3 2my’ 2ms3 2mo’
2 2
= asel’ + bsel, (4.8)

where

B R0 D S () _ 0By W

4 9 4 9 5 23 97 5 2 9"

m? + m? . 2 2 . .

Here a;; = 5 is the average mass squared, and f;; = m; — mj is the difference

between mass squared.

It is important to emphasize that even though a special kinematics has been chosen
to study the scattering amplitudes, our goal is to provide a concrete illustration of the
universality of stringy symmetry in a simple setup. To be more specific, while it is possible
to have other interesting features by including more free parameters in the kinematics, here
we shall take Vjy as the moduli parameter and extract the behavior of all stringy scattering
amplitudes as Vj continuously evolves from zero to infinity.

4.1.2 Kinematics for four-point functions in the light-like linear dilaton back-
ground

To calculate the high-energy limits of various four-point functions in the light-like linear
dilaton background, we choose to work with the ”center of momentum” frame and define
the following kinematic variables:

(i) light-like dilaton gradient, V* = 0F®, V = (VO, -V, 0).
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(i)

(iii)

(iv)

k.

ko

Figure 2. Kinematic configuration for four-point functions

momentum of the first particle (photon):

T T
ki = <E1 + 270, —ko — 170, 0), ko >0 (left-moving along x-axis),
ki (ki +14V) = —mi = —E} +k3 =0.
The reason that V3 = —Vj and m; = 0 is the same as the case of three-point functions,
see eq. (4.5).
momentum of the second particle:
Vi Ve
ko = (Eg — 170, ko + ZTO, 0>, (right-moving along x-axis)
ko - (ko+iV) = —m3 = —E3 + k3.
momentum of the third particle:
1 T
ks= (— E3— 270, —k3 cos ¢+ 170’ —k3 sin qﬁ) , (¢ is the scattering angle) (4.9)

ks - (ks +1iV) = —m3 = —E3 + k3.

momentum of the fourth particle:

A%,
ky = <E1+E2—E3—270

ki (ka+iV) = —mj = —(By + B2 — E3) + 13 = 0.

A%
,—kscos¢ + 170, —k3 sin(b),
momentum conservation: kj = ki + ko + k3 + V.
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Our choice of kinematic variables follows the conventions of previous works [10-14] on the
high-energy stringy symmetry and should be considered as a minimal extension of the
bosonic open string dynamics in the flat space-time. Thus, all the flat space-time results
will be recovered if we set Vy = 0, and we shall identify a new symmetry pattern as Vy/E
tends to infinity.

4.1.3 Polarization vectors for photon (o/m? = 0)

In the calculations of stringy scattering amplitudes, we shall need the polarization vector
for photon. Specifically, we take the transverse polarization vectors for photon moving
along z-axis as

el =el' =(0,0,1).

Given the momentum of the scattered (the third) particle k3, we need to solve for the
transverse condition, eq. (2.8), 3 - (k3 +14V) = 0, for the polarization vector. Based on our
kinematics setup, eq. (4.9), it is easy to check that eg is proportional to the following vector,

1 %
f =~ (0, ks sin ¢, ks cos ¢ + %)

V2
and the normalization constant, N, is given as N = k% + 70.
4.1.4 Mandelstam variables and momemtum-polarization contractions

Since the energy F; and momentum k; variables satisfy the same on-shell conditions as

those in the flat space-time, we define the average center of momentum energy F, as
FEi1+ FEy =2F = E3+ Ey. (410)

In the high-energy limit, we have [36]

_ B2 B B2 B B34 B B34
El—E+4E, EQ—E—4E, E3—E—|—4E, E4—E—4E, (4.11)
_ _ Qa2 gy~ B3
ki =ko~F ok ks=ky~F Yok (4.12)

The Mandelstam variables, in the light-like linear dilaton background, are defined as

s = —(ki+ ko) (ki + ko +iV) = AE® + 2iEVj, (4.13)
t = —(ka+ks) - (ko + ks +4V) (4.14)
= 2( — E3E3 + kokg cos ¢ + aa3) — i(F2 — E3 + ko —kzcos ¢) Vo, (4.15)

4
s—{—t—i—u:Zm?. (4.16)
1=1

Some useful results for the contractions among momenta and polarization vectors are listed
in table 1.
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k‘l 6{

L / w
ek | —2Vo'kE — 5 0
el 0 1

(a) The first and the second particle

kil 6,{
ks * —kssin ¢
o7 2koks sin ¢ + kg Vj sin @ 2ks cos ¢ + V)
° VAZ + V2 VAZ + V2
(b) The first and the third particles
ko 65 eg
ks * \/&(kQE:} — k3 FE» cos qb) + % —ks3sin ¢
T ~ 2Zkokg sin ¢ + ikzVp sin ¢ 2Va'kgEysin ¢ 2ks cos ¢ + iV
VARZ + V72 VARZ + V72 VAKS + VE

(¢) The second and the third particles

Table 1. Momentum-polarization contractions between particles

4.2 Stringy symmetry of the three-point functions

Three-point functions are typically fixed by the on-shell conditions and momentum con-
servation, hence there is no such a concept of high-energy limits. However, in the linear
dilaton background, three-point stringy scattering amplitudes are functions of a free pa-
rameter V. Hence, it is of interest to see how these coupling constants evolve from V() = 0
(flat space-time) to Vp/E — oo (strong linear dilaton gradient). Here we first list the
results from [31] which consists of seven sample calculations of tree-level three-point func-
tions. Then we rewrite the stringy scattering amplitudes in terms of helicity basis. Finally,
we compare two sets of coupling constants at two fixed-points in the moduli space.

4.2.1 General results for three-point functions in the light-like linear dilaton
background

Below we list the results for three-point functions in the light-like linear dilaton background.
These seven sample processes all include photon (P(C, k)) as the final outgoing particle and
we list only one particular channel of the stringy scattering amplitudes.

P(¢, k1)-T(k2)-T(ks3).

Aprr = V2a/(* - ko. (4.17)
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P(C1, k1)-T(k2)-P(¢3, k3).

Aprp = =20/ - kols - ko + (T - G. (4.18)
P((1, k1)-P(C2, k2)-T(ks).
Appr =20/ - koo - k3 + (T - Ca. (4.19)

P(C1, k1)-P(C2, k2)-P(Cs, k3).
Appp = —V20/(} - Gols - kiy + V20/C - (G - ks + V20/Ca - G - . (4.20)
P (¢, k1)-M(€pw, k2)-T(k3).
Apr = V20 e, CH(E + KS) + €+ CF + (22))2C* - boep kMRS, (4.21)
P (1, k1)-M(€pw, k2)-P(C3, k3).

Apyp = 261 — 20 e (H (KT + K5)ka - G5+ 20/ € CE (KTY + K5 ko - (F (4.22)
+20 € kiKY ((F - G — 20/ (T - kals - ke) — V2ae - (Tha - (3 — V2d/e - Gk - (.

P(Ca kl)_M(el(j,le)’ k2)_M(€§1,3y)’ k3)'

Apyvm
V2! (" ko (2a O kPkg —V2a/e®) -k ko) —2V 2a/e§,?(;)§*f’kg (2a'e Q)k“k” V2ole?). -k3)
+V20/C" - ko (262 €D+ 4v20/ () PP kG + 4v20/ D) PP g +
—8a E(2) B el gy — 66(2) . (3))
+2V 2« 6(2 CMEY (20 € 3)kpk2 V2a/e®) ko) + 46@(*“6(3)” - 465’”) ¢
+4V2a efy eV R — 4v20/ Q) PV R A (4.23)

4.2.2 Three-point functions in the helicity representation

In the section, based on the kinematic setup in section 4.1.1, we rewrite all three-point
functions in the helicity representation. The three-point functions involving photons and

tachyons are easy to compute, since (; el

P (¢, k1)-T(k2)-T (ks3).

Aprr = V2a/¢* kg = 0. (4.24)

P(C1, k1)-T(k2)-P(C3, k3).
Aprp = —=2d/(} - ka3 -k + (- (3= 1. (4.25)

P(¢1, k1)-P(C2, k2)-T(ks).
Appr =2d/¢S - kalo ks + (-G = 1. (4.26)
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P(C1, k1)-P(C2y k2)-P(Cs, k).
Appp = —V20/(} - (oGs - by + V20/ () - GaGa - ks + V20/Ca - G3(F - hp = 0. (4.27)

For all the stringy scattering amplitudes involving the spin-two particle (M), we need the
momentum decomposition, eqs. (4.6), (4.7) and (4.8).

P(¢, k1)-M(€puw, k2)-T(k3).
ag =1, by=—1, a5:—%, b5:—1+%.
Apur = V200, CPEY + k) + € ¢+ (20))2 ¢ - kg € k1KY
=0
= V2 (") [(a1+ as) (") + (ba +b5) (¢")"] + €u(e")”
= V2[(as + a5)u” + (bs + bs)u""] — V2a9u"" — V2byu""

= V2[(—iv)u"T + (=2 + iv)uT]. (4.28)
P(Cla kl)‘M(euua k2)'P(C37 k3)-
1 by — 1 B 1w be 1 n W
a/4 27 4 — 27 a5 - 2 2 I 5 — 2 2 .

Apuip = 26 CHCY — 20 € (K + KS)ka - Cs + 20/ € CE (K + KY)ka -
+20 kiKY (G- G — 20/ - kay - ko) — V2ale - (o - (3 — V2ale - Gy -
= 26, (Y + 20/ € KRS
= 21T 4+ 2 [a4a5uPP + (agbs + asby)uft + b4b5uLL}

. 1
= 2ulT — <1+Tw>upp + (iv)uPL + (Tw>uLL. (4.29)

P(Ca kl)_M(el(j,le)’ k2)_M(€§1,3y)’ k3)'

a4:O, b4:0, a5:—1——, b5:—.

Apvm
[\/_ "ok (20D RERT — V20 ¥ ky) — 220 3)C*Pk"] (20/ € kL kY —v/20/e®) - k3)
+V20/C" - k(262 e + 4v20/ () PP kg + 420/ D) PP kg
—8a 6(2) BVl gy — 66 - )
+2v20/ ¢! Q)C*“k:” (2a € B)k:pk:Q V2a/e®) kzg) + 4e Q)C*“e @y _ 4653)(*“6(2)”
+4V2/ D) eI 7 — a2 D) DV R
= —2@62% kg (2a €D Eby — \/_6(2 ks3)
+2\/_’6(2) *”kz”(Qoz DRk — V2a/e® )
+46(2 CH (- V2o BV iy 4 B )—46 ¢ (- V20 eV gy 4 DV )
=0. (4.30)
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Flat Background Linear Dilaton Background
Process Vo=0 Finite V) Vo/E — o0
PTT 0 0 0
PTP 1 1 1
PPP 0 0 0
PM(LL)T 0 0 0
—2¢/2 2
PM(LT)T /2 M V2i
v2 44

PM(TT)T 0 0 0
4o? +14 1

PM(LL)P 3 AT +w+3 S
4 2v/8v1 + 9v? 4 4 V2

PM(LT)P 0 0 0
PM(TT)P V2 vz vz

Table 2. Symmetry pattern of three-point coupling constants as functions of Vj

In the last case, we have k1 = 0, see eq. (4.6). Thus, combining momentum conservation,
ky + ks + 14V = 0, and the Virasoro constraint, eq. (2.10), we show that the three-point
on-shell stringy scattering amplitude Apysas vanishes identically.

4.2.3 Symmetry pattern of three-point functions

We emphasize that in the calculations of all three-point functions, the full vertex operators,
egs. (2.14), (2.15), (2.16) are used for each physical state. Thus, using egs. (3.6), (3.7), (3.9),
we can easily check that all massive stringy Ward identities [35] hold true at arbitrary value
of V. These identities clearly demonstrate a smooth deformation of the target space gauge
symmetry. In addition, we can examine the evolution of three-point coupling constants as
a function of the moduli parameter, Vj. If we identify V5 = 0 and Vy/FE — oo as two fixed-
points in the spectral flow, then we can summarize the symmetry pattern of three-point
functions in table 2.

4.3 High-energy stringy symmetry of the four-point functions

In this section, we discuss the high-energy stringy symmetry of four-point functions. Based
on the previous results [31], we first extract the fixed-angle high-energy limits (o/ E? — oo,
¢ fixed) of stringy scattering amplitudes in the flat space-time background by taking V = 0.
Here we provide some new explicit check for our master formula in [9, 10], and we shall
show that the inter-level stringy symmetry can be realized in the form of replacement rules.
Next we identify a new fixed-point in the moduli space (Vj/E — o), and extract the high-
energy limits of stringy scattering amplitudes at this fixed-point. Finally, we show how the
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stringy symmetry is deformed from one fixed-point to another by comparing two sets of
replacement rules.

4.3.1 General results for four-point functions in the light-like linear dilaton
background

In the discussion of section 4.1, we have shown that, for our choice of kinematics, the first
particle must be a massless photon. To extract the high-energy stringy symmetry, we list
five sample stringy scattering amplitudes (s-t channel only) in the following:

T (k4)-T(k3)-T (k2)-P((, k1)-

(-t —1)I(—a's—1)
N(—adt —a/s—1)

(ot 4+ a's +2)(V2/C - ko) + (/s + 1)(V2/C - k3) | .

Arrrp =

(4.31)

T(k4)-T(k3)-P(C2, k2)-P(C1, k1).

(&t + 1) (o't + /s + 1)(C1 - Co— 20/ - kaCa - Ky )
I(—a't—1)T(—a/s—1) —(a't+1)(/s +1) (20/C1 - k3Ca - ka

[(—a/t —'s) +(at+a's+1)(a's +1) (20/¢y - koo - k3
+(a's+1)(a's) (2a/¢y - k3Ca - k3)

Arrpp = ( )
( )

(4.32)
T(k4)-P (¢35 k3)-P(C2, k2)-P(C1, 1).
A (=t -1I'(-a's - 1)
rerE = MN—a/t—a's+1)
(Oélt + 1)(0/15) (20/)%41 . kQCQ . k‘1C3 cky — \/ﬂ({’, . k‘lCl . C2:|
(t+a's) ¢ +(@'t+1)(a's+1) |- (20/)%{1 ~koCo - ksCs - k1 + (20/)%4’1 ~ksCo - ki(s - ke
Ha's+1)('s) |— (22')3C - kaCa - kaCs - k2 + V207C1 - kaCo - Ca)]
X (@1) | (20")3¢1 - kaCe - kiCa- k1 — V2 (o - kaCa - G
+(@t+1)(a's+ 1) , .
+(a's) |2a/)2¢1 - ksl - ksCs - k1 + V2a/Ca - ks - Gs
(O/t + 1) (20/)%4-1 - koo - k1C3 - ko — \/@CS < ko(1 - G2
+(t+ s+ 1)(a't+a's) , 4
+(a's+1) |— (22/)2¢1 - ka2Ca - k3Cs - k2 +V2a/C1 - k2l - Ga
(4.33)

T(k4)‘T(k3)‘M(€uw k2)-P(C, k1)

I'(—at—1)I'(—a's — 1)
M-/t —a's+1)

Arrvmp =
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V2a/C - ko (2a’euyk§‘k§ —V2de- kl)

(o't +1)(t)
—2V2a/ € k' CY + 2¢ - €

/t / 7
(ot +a's) +(t+1)(s+1) | — 2(20/)%C - koe kiKY + 2v2a €, CHEY
« +(s+1)(o/s) | V2o/C- ko (20 € kEKY — V2 e - kzg)]
(@'t +1)(t) V2a/C - k3 (20 e k' kY — V2d/€ - k)

+Hs+ 1) +(dt+1)(d/s) |- 2(20/)%C . k:gewk’fk:g]

+(a/s)(a/s — 1) V2a/C - ks (20 e ki kY — V2d€ - k)

\ \ _ (4.34)
T(k4)'P(CBa k3)'M(€MV7 k2)'P(C1a kl)'
Arpasp — I(—a't = 1)I(—a/s — 1) " (4.35)

N(—a/t — o's+2)
(@t)(@'t —1) |(¢1-¢3 —2a¢r - k3C3 - k1) (20" e ki kY — V2ale - kl)]

(@'t +1)(a's+1) +(a't)(@s) [(¢1-¢3 —2a’¢r - k3lz - k1) (— 4a’e“,/k'{k§)]

(

+(a/s)(a's — 1) |(C1-C3 —2a/¢r - kals - k1) (20 epu kb kY — V2ale - k3)
[ —20/¢y - kaCs - k1 (20 epu KERY — VBaTe - ky)
+2v2a7¢s - k1 (V2o e ki ¢y — e ¢1) }
—20/¢y - k3Cs - ko (20 e kiKY — V2a7e - k)
+2(20")2¢1 - kaCs - kiepu ki kY — 40/ ¢y - kyepn kY
0 —2a/¢y - kaCs - k1 (20 epu kb kY — V2ale - k3)
+2(20")2¢1 - k3Ca - kaepu kY kY — 40/ ¢y - kgepn ki CY
I —20/Cy - k3 - ko (20 epp kb kY — V2a7e - k3)
+2v2a7¢y - k3 (V20 ep kE CY — € C3) }
] —20/¢y - kals - ko (20 ep ki kY — V2a7e - kq)
+2V207 ¢ - k2 (V2T kiCY — e 1) }
2(20/)%¢1 - k2Gs - kaepw kiKY — 401 - kaepn kY CY }
+2eu0 1 CY — 40’ (s - ko (' RY
—20/¢y - kals - ko (20 euy kb kY — V2a7e - k3)
+2v207¢1 - ko (V207 epykly ¢Y — e C3) }

(@'t +1)(a't)(a't — 1)

+(@'t+1)(a't)(a’s + 1)
+(cx’t +a's — 1)
X +(@'t+1)(a’s+ 1)(a’s)

+(a's+1)(a’s)(a’s — 1)

(@'t +1)(a’t)
+@'t+a’s)(a't+a’'s —1){ +(a’'t+1)(a's+1)

+(a's+1)(a’s)

W

4.3.2 High-energy stringy limits of four-point functions in the flat space-time
background

2-1. Kinematics. In order to make comparison between the stringy symmetry at two
fixed-points, we first study the high-energy limits of stringy scattering amplitudes in the
flat space-time background. In this limit, the Mandelstam variables become

s = 4E?, (4.36)
t = (B — B3)” — (ko — kscos ) — kZsin® ¢
~ —4E?sin? g + (m? 4+ m3 +m3 + m?) sin? g (4.37)
Notice that it is important to keep subleading terms in the ﬁ expansion in the calcu-

lations of high-energy limits of stringy scattering amplitudes in the flat space-time. The
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k‘l 6,{
e% —\/&(2E2 — 0412) 0

el 0 1

(a) The first and the second particles

k‘l 6{
Qszqy .
ks * (—E—i—ﬁ)sm(b
eg (E—%) sin ¢ cos ¢

(b) The first and the third particles

ko 6% 6,‘2r
(-2
ks * 2\/&Ezsin2§+\/a_( 312+ﬁ34) (_E+%
\/J(2a34+512) cos ¢
+ 1
eg (—E+%)sinq§ \/J(E—%)sintb cos ¢

(¢) The second and the third particles

Table 3. Momentum-polarization contractions (V' = 0 and E — oo)between particles

stringy scattering amplitudes involving a; oscillator in general have lower energy power

than the expectations from the naive power counting [9, 10, 12, 14].

The fixed-angle high-energy limits of relevant momentum-polarization contractions are

collected in table 3.

2-2. High-energy limits of stringy scattering amplitudes in the flat space-time
background. Here we set Vj = 0 and list the fixed-angle high-energy limits of the five

sample stringy scattering amplitudes.
T(k4)-T(k3)-T(k2)-P(C, k).

(—ad't —1)I'(—a's — 1) 9%/
I(—a't —a's)

Arrrp ~

T(k4)-T(k3)-P ({2, k2)-P(C1,k1)-

(—a't—1)I(—a's — 1) {2 u 6

14,6 g .
T(—a't — o's) 2 o2 B° sin“ — cos

Arrpp ~

T (k4)-P((3, k3)-P((2, k2)-P((1, k1).

PV —'s —
D(-a/t - DI(-a/s = D[ 1 70 56 6]
I(—at — a's) 2

Arppp ~

For spin-two particle, M(€,y, k2), there are three independent polarizations:
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T(k4)‘T(k3)‘M(€uw k2)-P(C, k1)

akial:
M=ot —1)I(—a/s —1)[ 18 2 7 . 3@ 10)
LL) ~ 2 E'sin® = —1. 4.41
Arryvp(LL) N E—— 2 a2 E'sin® 2 cos o (4.41)
aelazl
M-t —1)(—a's—1)[ 18 6 6 . 9¢
LT) ~ 2 E = . 4.42
Arrap(LT) N E—— 2 /2 EPsin® 2 cos ¢ (4.42)
ol ol
MN—ot—1)I(-a's—1)[ 1z ;7 ~ . 3¢ ¢
Arryp(TT) ~ E— 22 a2 FE'sin 5 Cos 5 |- (4.43)
T(k4)-P (¢35 k3)-M(€puns k2)-P(C1, k).
afial:
['(—a’t —1)I(—a's — 1) 6 8 o . 40
-ATPMP(LL) ~ F(—a/t — O/S) — 22 a2 E°sin 5 . (444)
aelazl

(-t — 1 (—=a's—1
(—a’t = )D(=as >{_Qzﬁa@ysmgmngww}<4.45>

Arpyp(LT) ~

I(—a't —a's)
aljal:
['(—a't—1)I(—a's —1) 20 8 8 . 40
Arpyp(TT) ~ N — — 22 a2 FE®sin 5| (4.46)

4.3.3 High-energy stringy limits of four-point functions in the light-like linear
dilaton background

3-1. Kinematics. In this subsection, we collect all relevant kinematic variables in the
fixed-angle high-energy limit with infinite light-like linear dilaton gradient, Vy/FE — oc.
First of all, the Mandelstam variables become

s ~ 2iEV), (4.47)
t ~ —i(Ey — E3) Vo — i(ks — k3 cos ¢) Vo ~ —2i EVj sin® % (4.48)

It is interesting to see that, in the infinite light-like linear dilaton gradient limit V/E — oo,
the ratio between two Mandelstam variables ¢/s is the same as that of flat space-time

(™ )

The relevant momentum-polarization contractions in the background with infinite

background

— sn2?
= —sln 5

Vi
E*)OO,JE;*?OO

light-like dilaton gradient are collected in table 4.

— 24 —



ky eT ky ef
ek | —iVdEV, 0 ks % —Esin¢
el 0 1 el iEsin ¢ i

(a) the first and the second particles (b) the first and the third particles

ko e% eg
ks * iVo/ BV, —iEsin ¢
el —iEsin ¢ 0 i

(c) the second and the third particles

Table 4. Momentum-polarization contractions (F — oo and V;/E — 00) between particles

3-2. High-energy limits of stringy scattering amplitudes in the light-like linear
dilaton background. Here we take Vj/E — oo limit, and list the fixed-angle high-energy
limits of the five sample stringy scattering amplitudes.

T(k4)-T(k3)-T(k2)-P(¢, k1)-

Arrrp ~ P(_art(:;,)tr_(;(}; —b (—a't—a's)(a's)(V2a/C - k3)
I(—dt —1)I(—a/s — 1) T 45 312 ? 3 ?
~ M=ot — a's) [— 220/2 E°V sin 5 08 2]. (4.49)
T(k4)-T(k3)-P(C2, k2)-P(C1, k1)-
Arrep ~ F(—F(Z_tgi—_aafs; 2 (a'5)*(2a/Cy - ks - ks)
I'(—a/t—1)I'(—a/s —1 0, .
~ I aF(—a/)t _( a(/)zs)s ) [ — 22 o B4V sin® g cos? %] . (4.50)
T (k4)-P (¢35 k3)-P(C2, k2)-P(C1, k1).
D,
(ot +1)| = (20)2G1 - ksCa - ksGs - b
X
o/t 4 os) | = (202G - kaa - kaGa - b
MN(—adt—1)I(—a's—1) [ 13, ,z .
~ ( ap(_a% _( O;;; ) 27402 B°VE sin® % cos % . (4.51)

T(k4)'T(k3)'M(€uu7 k2)'P(<7 kl)'
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L L .

I(—a't—1)I'(—a's —1)
N(—a't —a's+1)
) -

Arryvp(LL) ~ (a/s+1) x
('t +1)(c't) (20/)2¢ - gep kiKY

x{ +(at+1)(s) | =2 (20/)2¢ - kgep ki kY

+(as) (/s — 1) (20/)%C o N

M(—ad't—1)I'(—a's —1)
N(—a't —a/s+1)

(os) [(o/t)2 +2(a't) () + (0/3)2] X

|0t ek 1]

MN—at—1)I(=a's—1)[ 9 9 5.4 . & 50
~ T ot —a's) 220/2 E°V) sin 508" |- (4.52)

L T .

M(—at —1)I(—a's—1)

Arrap(LT) ~ N(—at —a/s+1)

(—a's —1) x

(@'t +1)('s) |2 (20/)%< ‘ k3€uvk?k§}
X
+(as)(a's — 1) | (2a))2¢- kseuukgkg)]
(ot —1)I(—d's—1)
- MN—ao't—ao's+1)
X {(0/3)2 [ — (a't)(el - k) + (o/5) (e kg):| [(2&’)%6{ - ksel k3:| }

(=o't —1)I(—ad's—1)
I(—a't — o's)

[iZ%a’%ESVO?’ sin? % cos? g] . (4.53)

aTlazl

I'(—ot—1)I'(—a's—1)
MN(—ao't—ao's+1)
N I(—a't = 1)I(—a/s — 1) [(a's)3(2a')%(elT . k3)3]

Arrymp(TT) ~

(o/s+1)(as)(a/s— 1)[(20/) 3 ¢ kgeu,,kg‘kg}

I(—a/t — a's) (—at — o's)
M(—a't—1)I'(—a's —1) 18 47 59 .30 @
~ T ot —a's) — 272 a2 B’V sin 5 85| (4.54)
ok,

Arryvp(L) ~

T(—a/t—1)[(—a/s+1) (/s 1) (@'t +1)(a't)(—2a/C - kzel - k)
MN—a/t —a/s+1) +a's)(a's—1)(—2a/C ksek -ks)
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. I(—a't — 1)T(—als — 1) (s) [(o/t)2 - (0/5)2} (—2d/el - ksek - k)

I(—a't —o's) (—a't — o's)
M=t —1)I(=d/s—=1) [ 4. ,z N
~ ( T(—a't — a's) 240/ E4V03(1 + sin? 5) sing|. (4.55)

I(—a/t — )T (—a's —
I(—a't = 1)I(—a/s — 1) o 9 qj

T (k4)-P((3, k3)-M(€pun, k2)-P (1, k1). Since the result for Appyp involves lengthy
formula, we separate the equation into two parts.
The contribution from €., =

(-t —1)I(—a's—1)

N(—a't —a's+2)
(

Arrmp(T) ~

2

Arpyvp ~

(o/t)(0't — 1)(~40"1 - kG - Krepu bARY) |
((XIS + 1)(0/t + 1) +(a/t)(o/s)(80/2C1 . k3<3 . klﬁuykiikg)
y +(O/S)(O/S — 1)(—40/2C1 . k3<3 . kleuykgkg) ]

(ot + 1)(at) (o5 + 1)(—40"2C; - ksCs - haep K RY) ]

)
H(@t4+a's=1) | +(/t + 1)(a's + 1)(/5)(8'2Cy - k3Cs - koe, kLK)
)

+(a's+1)(a's) (o) s—1)(—4a/C1 - k3C3-kaep K5 kY |
M-t —1)I(—a's—1)
N(—a't —a's+2)

(o/5)? x

X | (@) (ki kY) = (@'t)(s) (26 kY kE) + (o' 5)* (€ kb k5 )}(40/2(1-16343 k).

(4.57)

a£1a£1

Arpyp(LL) ~

I'(—dt—1)I(—a's—1
(I’(—o/tzcg/s%—?) )(a/Ha/s)z(a/S)Q(e%'kl)Q( el kaes k)
/ /
N F(—Oé t— 1)F(_Oé S — 1) _9% 2 iOé 2 E6V4 San (ZS 82 ? . (458)
I(—at —a's)

2

aLlaTl

(-t —1)I(—a's—1) 3, L T
M=o/t — o's 1 2) (o't +a's)(as) (e - k1)(ey - k3)
x (—4a?el - kzel - k)
MN—at—1)I(=d's=1)[ 10 9 6 o0 .  ad &
~ —cos — |. 4.
N E—— 22 a2 E°Vy sin 5 €08 5 (4.59)

Arpyp(LT) ~
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T T .

I'(—at —1)I'(—a's — 1)
N(—a/t —o's +2)
I'(—dt—1)I'(—a's —1)

6
~ T(—a't — o/s) 2% id/5E V§ sin

Arpyp(TT) ~ (o/s)(ed - k3)? (40T - kzel - k)

4¢

(4.60)

The contribution from €, =
I'(—dt—1)I(—a's—1)
N(—a/t —o's + 2)

Arpmp ~

()t = 1) (20/)3C1 - hsCs - he -k
(t+1)('s+1) L , ]
+(0/8)(O/S — 1) (20/)5C1 - k3(3 - ki€ k3

(Oélt + 1)(Oé/t)(04/8 + 1) (20/)%C1 - k3(3 - ko€ -k
+(t+ad's—1) 3 , 1
+('s+ 1) (s) (/s —1)[(2/)2¢q - k33 - kae - ks

Tat-yr-as-1 @ (e +alsern) |- 2a ]

I(—a't — 's) (—ao/t — a's)?

(4.61)

Qg
M(—a't—1)I'(—a's —1) ) o

Arprrp(L) ~ N E—— 922 /4E5V0 1 + sin? B smgbtan 4.62)

Q9
I'(—at =1 (—o's — 1) gL i1 ) ¢
Arpyp(T) ~ e id2FE VO sin —tan 5 (4.63)

4.3.4 High-energy stringy symmetry and replacement rules for four-point
functions

From the five sample calculations of high-energy stringy scattering amplitudes in sec-
tion 4.3.2, we observe three interesting features:

(1) The leading energy power (VA/E)" (e.g. Arryp(LT) ~ (Vo/E)® is subleading)
obeys the addition rule:

4
n=> (N;+1). (4.64)
=1

Here the level N; for each particle is: N(T) = 0, N(P) = 1, N(M) = 2. This
feature was first pointed out in [9, 10] and there is a saddle-point calculation [12-14]
supporting that this addition rule is true for arbitrary high-energy stringy scattering
amplitudes. It seems to suggest some partonic (or string-bit) picture of high-energy
stringy scatterings.
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(2)

Comparing different degrees of freedom at the same mass level, we see that there
exists linear relations [9, 10] among high-energy stringy scattering amplitudes

Arryvp(LL) - Apryp(TT) =11 4, (4.65)
Arpyp(LL) : Appyp(TT) =1 4. (4.66)

In addition, there are also linear relations among high-energy stringy scattering am-
plitudes with the same total level n

Arryup(LL) : Arryp(TT) : Arppp =1:4: —4. (4.67)

Our main concern in the present study is to explore the symmetry pattern for high-
energy stringy scattering amplitudes of different total level. One of the early attempt
for studying the subleading high-energy stringy scattering amplitudes can be found
in [15]. Here we wish to push the idea further, and indeed we can identify a set
of replacement rules (ignoring the phase factors) for relating different high-energy
stringy scattering amplitudes. The replacement rule is summarized in figure 3. One
can see clearly that from the figure, if we start from the amplitude Aprrrp, by re-
placing any particle (T or P) into a different particle, we can predict the results for
new high-energy stringy scattering amplitudes based on the rules in table 5.

In contrast, as we move to the infinite light-like linear dilaton gradient limit Vy/E — oo,

we find the three special features related to high-energy stringy symmetry are modified as

follows:

(1)

First of all, there is no reduction of energy power for the stringy scattering amplitudes
involving o’ oscillator. Consequently, the leading energy power (vo/E)" obeys
different addition rule:

4
n= (Z N,) +2 (4.68)
i=1
In addition, all high-energy stringy scattering amplitudes have a (vo/Vp)? factor if

we take into account the state normalization egs. (3.19) properly.

In the Vy/E — oo limit, there is no linear relations among independent degrees of
freedom at the same mass level. Indeed,

ATTMP(LL) : ATTMP(LT) : ATTMP(TT) = 00822 : isin(b —4 sin2§ (469)
-ATPMP(LL) . ATPMP(LT) . ATPMP(TT) = COS2 % . isin(b . —4sin2 g (470)

This angle-dependent relation should not be understood as a lost of symmetry.
Rather, if we examine the angle dependence of Appyrp(LT) and Appasp(LT), we see
that they are of subleading energy orders in the flat space-time, eqs. (4.42), (4.45), but
now carry the same energy orders as those of (LL) and (7TT) in the infinite dilation
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Figure 3. Replacement rules as a manifestation of inter-level stringy symmetry

gradient case. In view of this, it would be natural to interpret that the flat space-time
linear relations among high-energy stringy scattering amplitudes should be consid-
ered as degenerate limit of high-energy stringy symmetry. This is very similar to the
analogy of group contraction we mentioned in the introduction. The isometry group
for the Euclidean plane contains two commuting generators (translations along two
coordinate axes), which are degenerate deformation of the (more symmetric, hence
non-commuting) angular momentum generators.

Having explained the idea of deformation of the high-energy stringy symmetry, it
should be clear that the separation of symmetry patterns among equal-mass states
(a horizontal relation) and inter-level states (a vertical relation) in the flat space-
time background is not really essential. In the simple example of bosonic open string
theory in the light-like linear dilaton background, as we have studied in this pa-
per, it is of more importance to see the general symmetry pattern as reflected in the
replacement rules. By comparing the sample calculations of high-energy stringy scat-
tering amplitudes, we can identify the replacement rules (ignoring the phase factors)
at Vo/E — oo in table 5. While there are three identical rules regarding ' — P,
P — Mpp, and T' — My replacements, we find the deformation indeed modifies the
rest of replacement rules at V) = 0 to a new set of replacement rules at V/E — oo.
These new replacement rules at Vy/E — oo fixed-point justify our proposal for the
universal property of high-energy stringy symmetry.
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Flat Background Linear Dilaton Background
(Vo =0, E — o0) (Vo/E — o0, E — o)
TP 2%\/5Etan§ 2%\/JEtan%
P — My, 27%\/JEtan§ 27%(% %E‘/(]Qcotg
P — Mr g% €89 230/ EV,
cos? %
3 o 3 o
P — Mpr 22\/5Etan§ 22\/3Etan§
B 2
P, 0 22\/&‘/0(.1—{—5111 %5)
sin ¢
-1 9 @
P — My 0 272 gec 5
T — My, 20/ E? tan? g 202 B2V
T — Mr 2o'E cos ¢ tan ? 22O/%E2‘/0 tan ?
cos? % 2 2
T — Mpp 230/ E? tan® g 230/ E? tan? %
3
22/ EVj(1 4 sin® 2
T — ML 0 0( 2)
cos? %
T — My 0 2\/&Ese(:2§tan§

Table 5. Replacement rules for four-point functions

5 Summary and conclusion

In this paper, using bosonic open string theory in the light-like linear dilaton background
as an illustration, we discuss the universal property of the high-energy stringy symmetry.
This universal property is shown in two aspects:

(1) An explicit formula for the covariant spectrum, up to the first massive level, is derived
as a function of the moduli parameter, namely, the light-like linear dilaton gradient Vj.

(2) The fixed-angle high-energy limits of various string scattering amplitudes are calcu-
lated as a function of the moduli parameter V.

From these results, we identify two fixed points in the spectral flow and derive the replace-
ment rules as a signature of deformed high-energy stringy symmetry. While this example is
only one of many exactly solvable string theory models in which one can realize the idea of
a universal stringy symmetry, one can follow the idea and explore new symmetry patterns
in other conformal invariant backgrounds. It should be emphasized that our conclusion
of the high-energy stringy symmetry is based on the study of tree-level stringy scattering
amplitudes only. In principle, one can also calculate the one-loop stringy scattering am-
plitudes and extract their high-energy limits based on the operator formalism [32, 41]. It
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would be of interest to see if the pattern of high-energy stringy symmetry persists at the
one-loop level as the original claim [4], or it can provide an independent check of the results
by Moeller and West [42].

In conclusion, we list some of the problems that we hope to finish and provide further
insights toward an understanding of the nature of stringy symmetry:

(1) Probing the deformation of the stringy symmetry in other kinematic regions (not
necessary at high energies).

(2) Identification of the symmetry generators based on a ”tensionless” string approach
to the properly scaled string world-sheet action [37-40].

(3) Extending the formulae in Moore’s work [5-7] on stringy symmetry and check the
compatibility between inter-level Ward identities and the deformation of stringy spec-

trum via spectral flow.

(4) Clarify the role of Liouville mode and extend our study on string symmetry to various

space-time dimension.

(5) Identifying the universal string symmetry in the M-theory context.
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